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The commonly seen additive arithmetic functions are ω(n), the number
of distinct prime factors of n, and Ω(n), the number of prime divisors of n
counted with multiplicity. So

ω(n) =
∑

p|n
1 and Ω(n) =

∑

pr|n
1 =

∑

pa||n
a.

There are ‘artificial’ examples given by the logarithms of multiplicative
functions, such as log d (n). We will concentrate on ω and Ω.

Little can be said of ω(n) for individual n, so we further concentrate on
averages of ω(n)

Theorem 1 We have

∑

n≤x

ω(n) = x log log x+O(x) ,

and
∑

n≤x

ω2(n) ≤ x (log log x)2 +O(x log log x) . (1)

The second result can be proved with equality, not just an upper bound,
but we give the stated result for simplicity.

Proof Start from

∑

n≤x

ω(n) =
∑

n≤x

∑

p|n
1 =

∑

p≤x

∑

n≤x
p|n

1, (2)

having interchanged the summations. Continuing,

=
∑

p≤x

[

x

p

]

=
∑

p≤x

(

x

p
+O(1)

)

= x
∑

p≤x

1

p
+O(π(x))

= x (log log x+O(1)) +O(x) ,

using Merten’s Theorem on the sum of reciprocals of primes, and the trivial
π(x) ≤ x. Thus the required result follows.
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Next
∑

n≤x

ω2(n) =
∑

n≤x

∑

p|n
1
∑

q|n
1 =

∑

p≤x

∑

q≤x

∑

n≤x
p|n,q|n

1.

Then this double sum over pairs of primes (p, q) splits into either p = q or
p 6= q. That is,

∑

p≤x

∑

q≤x

∑

n≤x
p|n,q|n

1 =
∑

p≤x

∑

n≤x
p|n

1 +
∑

p≤x

∑

q≤x

p 6=q

∑

n≤x
pq|n

1

=
∑

p≤x

[

x

p

]

+
∑

p≤x

∑

q≤x

p 6=q

[

x

pq

]

≤
∑

p≤x

x

p
+
∑

p≤x

∑

q≤x

x

pq
. (3)

Here we have used [u] ≤ u for real u, and dropped the restriction p 6= q,
increasing the sum. Continuing

∑

n≤x

ω2(n) ≤ x
∑

p≤x

1

p
+ x

(

∑

p≤x

1

p

)2

. (4)

By Merten’s result again,

x

(

∑

p≤x

1

p

)2

= x (log log x+O(1))2 = x (log log x)2 +O(x log log x) (5)

The first sum on the right hand side of (4) is of the same magnitude as
the error in (5). Combine to get stated result. �

Note the inequality in (3) is due to two approximations: [u] ≤ u for real u,
and dropping the restriction p 6= q. The errors in these approximations can
be estimated as O(x log log x) in which case we can prove (1) with equality.
See the Problem Sheet.
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The two parts of Theorem 1 can be combined in

Theorem 2 (Turán)
∑

n≤x

(ω(n)− log log x)2 = O(x log log x) .

Proof
∑

n≤x

(ω(n)− log log x)2 =
∑

n≤x

ω2(n)− log log x
∑

n≤x

ω(n) + (log log x)2
∑

n≤x

1

≤ x (log log x)2 +O(x log log x)

− (log log x) (x log log x+O(x))

+ (log log x)2 (x+O(1))

= O(x log log x)

�

Note that with more work (in particular, with equality in (1)) this result
can be improved to

∑

n≤x

(ω(n)− log log x)2 = x log log x+O(x) .

Return now to Theorem 2 and replace the log log x term by log log n in
the terms of the series so they do not depend on x. For this we need a lemma.

Lemma 3
∑

3≤n≤x

(log log x− log log n)2 = O(x) .

Proof The idea has been seen before, to split the sum into a long sum on
which the summand changes little, with a remaining short sum on which the
summand may change a lot.

In the long interval
√
x < n ≤ x we have that

0 = log 1 = log

(

log x

log x

)

≤ log

(

log x

log n

)

< log

(

log x

log
√
x

)

≤ log 2.

In the short interval 3 ≤ n ≤ √
x we have

log 2 < log

(

log x

log n

)

≤ log log x.
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Thus, the contribution from the long interval is

∑

√
x<n≤x

(log log x− log log n)2 ≤
∑

n≤x

(log 2)2 ≪ x. (6)

And from the short interval

∑

3≤n≤√
x

(log log x− log log n)2 ≤
∑

3≤n≤√
x

(log log x)2 ≤
√
x (log log x)2 . (7)

Combine (7) and (6) to get stated result. �

In the following proof we make use of

(a+ b)2 ≤ 2
(

a2 + b2
)

.

This can be proved by starting with (x− 1)2 ≥ 0. For then x2 + 1 ≥ 2x and
then, adding x2 + 1 to both sides, 2x2 + 2 ≥ x2 + 2x + 1 = (x+ 1)2. Apply
this with x = a/b (if b = 0 the result is trivial).

Corollary 4

∑

3≤n≤x

(ω(n)− log log n)2 = O(x log log x) .

Proof Result follows from Theorem 2 and Lemma 3 used within

∑

3≤n≤x

(ω(n)− log log n)2 =
∑

3≤n≤x

(ω(n)− log log x+ log log x− log log n)2

≤ 2
∑

n≤x

(ω(n)− log log x)2

+2
∑

3≤n≤x

(log log x− log log n)2

�

Corollary 5 Let δ > 0 be given. Then the number of 3 ≤ n ≤ x which do
not satisfy

|ω(n)− log log n| < (log log n)1/2+δ (8)

is ≪ x (log log x)−2δ .
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Proof The exceptional set is

E(x) =
{

3 ≤ n ≤ x : |ω(n)− log log n| ≥ (log log n)1/2+δ
}

.

For the argument below let

E0(x) =
{

n ∈ E (x) : n ≥
√
x
}

.

Then |E (x)| = |E0 (x)| + O(
√
x). Consider first a sum over the integers in

E0 (x) ,
∑

n∈E0(x)
|ω(n)− log log n|2 ≥

∑

n∈v0(x)

(

(log log n)1/2+δ
)2

≥
(

log log
√
x
)1+2δ

∑

n∈E0(x)

1

since n ∈ E0 (x) =⇒ n ≥
√
x

≫ |E0 (x)| (log log x)1+2δ .

Yet
∑

n∈E0(x)
|ω(n)− log log n|2 ≤

∑

3≤n≤x

|ω(n)− log log n|2 ≪ x log log x.

by Corollary 4. Combine the last two results as

|E0(x)| ≪
x

(log log x)2δ
.

Since
√
x grows so much slower that this, the same bound holds for |E(x)|.

�

Definition 6 If a property P (n) holds for all n ≤ x except for n ∈ E(x), (E
for exceptional) and |E(x)| = o (x) we say that the property P (n) holds for

almost all n.

In Corollary 5
|E(x)|
x

≪ 1

(log log x)2δ
→ 0

as x → ∞, so |E(x)| = o (x). Thus, for any δ > 0, |ω(n)− log log n| <

(log log n)1/2+δ for almost all n.
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Definition 7 We say that a function f(n) has normal order F (n) if, for
every ε > 0 the inequality

(1− ε)F (n) < f(n) < (1 + ε)F (n)

for almost all values of n.

This can be written as |f(n)− F (n)| < εF (n) for almost all n.

Corollary 8 ω (n) has normal order log log n.

Proof Choose δ = 1/4 in Corollary 5 (only chosen so that 1/2 + δ < 1) so

that |ω(n)− log log n| < (log log n)3/4 for almost all n.

Let ε > 0 be given. Then for n > exp exp (1/ε4) we have (log log n)3/4 ≤
ε log log n. Thus |ω(n)− log log n| < ε log log n for almost all n.

Hence we have verified the definition that ω (n) has normal order log log n.
�

This was a result of Hardy and Ramanujan (1916). It says that almost
all integers n have log log n distinct prime divisors.

Turán’s result holds with ω replaced by Ω and we have similarly that the
number of 3 ≤ n ≤ x which do not satisfy

|Ω(n)− log log n| < (log log n)1/2+δ (9)

is ≪ x (log log x)−2δ . Of course, the sets of n ≪ x (log log x)−2δ . for which
(8) fails and (9) fails may not be the same but the size of the union of the
exceptions is still ≪ x (log log x)−2δ, only the implies constant changes. Thus
was can assume both (8) and (9) hold for almost all n. They can be combined
in the one result for the divisor function:

Proposition 9 For all ε > 0 we have

(log n)log 2−ε < d(n) < (log n)log 2+ε ,

for almost all n.

The following result is fundamental to the proposition,

Lemma 10 For n ≥ 1,

2ω(n) ≤ d(n) ≤ 2Ω(n).
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Proof of lemma The functions ω and Ω are additive so 2ω and 2Ω are mul-
tiplicative. The divisor function is also multiplicative. Since these functions
are all positive we need only show the inequality on prime powers.

For the lower bound d(pa) = 1 + a ≥ 2 = 2ω(p
a).

For the upper bound first note that it follows by induction that 1+a ≤ 2a

for all integers a ≥ 1. Hence

d(pa) = 1 + a ≤ 2a = 2Ω(pa).

�

Proof of Proposition Let ε > 0 be given. Then, just as

(1− ε/ log 2) log log n < ω(n) < (1 + ε/ log 2) log log n

for almost all sufficiently large n followed from (8) then from (9) the same
inequalities follow with ω replace by Ω.

Note next that

2(1±ε/ log 2) log logn = exp ((log 2± ε) log log n) = exp
(

log (log n)(log 2±ε)
)

= (log n)(log 2±ε) .

Hence, by the Lemma,

(log n)(log 2−ε) < 2ω(n) ≤ d(n) ≤ 2Ω(n) < (log n)(log 2+ε) ,

for almost all n. �

The Proposition can be interpreted as saying that for almost all n the
divisor function d(n) is approximately

2log logn = elog 2 log logn = 2log(logn)
log 2

= (log n)log 2

= (log n)0.693... .

Yet from the average result
∑

n≤x d(n) ∼ x log x we might have guessed the

size of most d(n) to be log n.

The fact that d(n) is almost always smaller than log n means that when it
is larger it must be substantially larger. This can be seen in the

∑

n≤x d
2(n) ∼

cx log3 x result for the squaring of d(n) has amplified the substantially larger
values of d(n) and though they occur rarely they have contributed to the
cube of the logarithm on the right hand side.
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